Article ID Journal Published Year Pages File Type
1705803 Applied Mathematical Modelling 2008 12 Pages PDF
Abstract

In this study, mathematical modelling and dynamic response of a flexible robot manipulator with rotating-prismatic joint are investigated. The tip end of the flexible robot manipulator traces a multi-straight-line path under the action of an external driving torque and an axial force. Considered robot manipulator consists of a rotating prismatic joint and a sliding flexible arm with a tip mass. Flexible arm is assumed to be an Euler–Bernoulli beam carrying an end-mass. Equations of motion of the flexible manipulator are obtained by using Lagrange’s equation of motion. Effect of rotary inertia, axial shortening and gravitation is considered in the analysis. Equations of motion are solved by using fourth order Runge–Kutta method. Numerical simulations obtained by using a developed computer program are presented and physical trend of the results are discussed.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,