Article ID Journal Published Year Pages File Type
1706035 Applied Mathematical Modelling 2012 19 Pages PDF
Abstract

A hollow sphere made from functionally graded piezoelectric material (FGPM) such as PZT_4 has been considered. One-dimensional analytical method for electro-thermo-mechanical response of symmetrical spheres is used. For asymmetric three-dimensional analysis, ANSYS finite element software is employed in this study. Loading is combination of internal and external pressures, a distributed temperature field due to steady state heat conduction and a constant electric potential difference between its inner and outer surfaces for analytical solution. In three-dimensional solutions closed and open spheres with different boundary conditions subjected to an internal pressure and a uniform temperature field are studied. All mechanical, thermal and piezoelectric properties except the Poisson’s ratio are assumed to be power functions of radius. It has been found from analytical solution that the induced radial and circumferential stresses of an imposed electric potential is similar to the residual stresses locked in the homogeneous sphere during the autofrettage process of these vessels. It has been concluded from the three-dimensional analysis that the magnitudes of effective stresses at all node points are higher for the clamped–clamped boundary condition and are lower for the simply–simply supported condition.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,