Article ID Journal Published Year Pages File Type
1706180 Applied Mathematical Modelling 2008 12 Pages PDF
Abstract

This paper presents a second-order continuity non-overlapping domain decomposition (DD) technique for numerically solving second-order elliptic problems in two-dimensional space. The proposed DD technique uses integrated Chebyshev polynomials to represent the solution in subdomains. The constants of integration are utilized to impose continuity of the second-order normal derivative of the solution at the interior points of subdomain interfaces. To also achieve a C2C2 function at the intersection of interfaces, two additional unknowns are introduced at each intersection point. Numerical results show that the present DD method yields a higher level of accuracy than conventional DD techniques based on differentiated Chebyshev polynomials.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,