Article ID Journal Published Year Pages File Type
1706405 Applied Mathematical Modelling 2011 8 Pages PDF
Abstract

In this paper we present a new method of confidence interval identification for Takagi–Sugeno fuzzy models in the case of the data with regionally changeable variance. The method combines a fuzzy identification methodology with some ideas from applied statistics. The idea is to find, on a finite set of measured data, the confidence interval defined by the lower and upper bounds. The confidence interval which defines the band that contains the measurement values with certain confidence. The method can be used when describing a family of uncertain nonlinear functions or when the systems with uncertain physical parameters are observed. In our example the proposed method is applied to model the pH-titration curve.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,