Article ID Journal Published Year Pages File Type
1706515 Applied Mathematical Modelling 2008 14 Pages PDF
Abstract

The unsteady Couette–Poiseuille flow of an electrically conducting incompressible non-Newtonian viscoelastic fluid between two parallel horizontal non-conducting porous plates is studied with heat transfer considering the Hall effect. A sudden uniform and constant pressure gradient, an external uniform magnetic field that is perpendicular to the plates and uniform suction and injection through the surface of the plates are applied. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are taken into consideration. Numerical solutions for the governing momentum and energy equations are obtained using finite difference approximations. The effect of the Hall term, the parameter describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and temperature distributions is examined.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,