Article ID Journal Published Year Pages File Type
1706520 Applied Mathematical Modelling 2008 16 Pages PDF
Abstract

We consider an M[x]/G/1 queueing system with a startup time, where all arriving customers demand first the essential service and some of them may further demand one of other optional services: Type 1, Type 2, … , and Type J service. The service times of the essential service and of the Type i  (i=1,2,…,J)(i=1,2,…,J) service are assumed to be random variables with arbitrary distributions. The server is turned off each time when the system is empty. As soon as a customer or a batch of customers arrives, the server immediately performs a startup which is needed before starting each busy period. We derive the steady-state results, including system size distribution at a random epoch and at a departure epoch, the distributions of idle and busy periods, and waiting time distribution in the queue. Some special cases are also presented.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,