| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 1706704 | Applied Mathematical Modelling | 2010 | 17 Pages |
We consider a fully discrete two-level approximation for the time-dependent Navier–Stokes equations in two dimension based on a time-dependent projection. By defining this new projection, the iteration between large and small eddy components can be reflected by its associated space splitting. Hence, we can get a weakly coupled system of large and small eddy components. This two-level method applies the finite element method in space and Crank–Nicolson scheme in time. Moreover,the analysis and some numerical examples are shown that the proposed two-level scheme can reach the same accuracy as the classical one-level Crank–Nicolson method with a very fine mesh size h by choosing a proper coarse mesh size H. However, the two-level method will involve much less work.
