Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1706798 | Applied Mathematical Modelling | 2010 | 13 Pages |
This paper deals with a single server working vacation queueing model with multiple types of server breakdowns. In a working vacations queueing model, the server works at a different rate instead of being completely idle during the vacation period; the arrival rate varies according to the server’s status. It is assumed that the server is subject to interruption due to multiple types of breakdowns and is sent immediately for repair. Each type of breakdown requires a finite random number of stages of repair. The life time of the server and the repair time of each phase are assumed to be exponentially distributed. We propose a matrix–geometric approach for computing the stationary queue length distribution. Various performance indices namely the expected length of busy period, the expected length of working vacation period, the mean waiting time and average delay, etc. are established. In order to validate the analytical approach, by taking illustration, we compute numerical results. The sensitivity analysis is also performed to explore the effect of different parameters.