Article ID Journal Published Year Pages File Type
1706807 Applied Mathematical Modelling 2010 7 Pages PDF
Abstract

This paper is concerned with the free vibration of the fluid-filled multi-walled carbon nanotubes (MWCNTs) with simply supported ends. Based on simplified Donnell’s cylindrical shell model and potential flow theory, the effect of internal fluid on the coupling vibration of the MWCNTs-fluid system is discussed in detail. The results show that the resonant frequencies are decreased due to the effect of the fluid, and the fluid has only a little influence on the associated amplitude ratio in MWCNTs corresponding to the natural resonant frequency (frequency of the innermost tube), while plays a significant role in the associated amplitude ratios corresponding to the intertube resonant frequency. For the natural resonant frequency, the vibration mode is coaxial. However, for the intertube resonant frequency, the system shows complex noncoaxial vibration, which plays a critical role in electronic and transport properties of carbon nanotubes (CNTs).

Keywords
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,