Article ID Journal Published Year Pages File Type
1707040 Applied Mathematical Modelling 2009 11 Pages PDF
Abstract

This paper considers a number-dependent replacement policy for a system with two failure types that is replaced at the nth type I (minor) failure or the first type II (catastrophic) failure, whichever occurs first. Repair or replacement times are instantaneous but spare/replacement unit delivery lead times are random. Type I failures are repaired at zero cost since preventive maintenance is performed continuously. Type II failures, however, require costly system replacement. A model is developed for the average cost per unit time based on the stochastic behavior of the system and replacement, storage, and downtime costs. The cost-minimizing policy is derived and discussed. We show that the optimal number of type I failures triggering replacement is unique under certain conditions. A numerical example is presented and a sensitivity analysis is performed.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,