Article ID Journal Published Year Pages File Type
1707766 Applied Mathematics Letters 2015 4 Pages PDF
Abstract

In this paper, we show that perturbing a simple 3-d quadratic system with a center-type singular point can yield at least 10 small-amplitude limit cycles around a singular point. This result improves the 7 limit cycles obtained recently in a simple 3-d quadratic system around a Hopf singular point. Compared with Bautin’s result for quadratic planar vector fields, which can only have 3 small-amplitude limit cycles around an elementary center or focus, this result of 10 limit cycles is surprisingly high. The theory and methodology developed in this paper can be used to consider bifurcation of limit cycles in higher-dimensional systems.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,