Article ID Journal Published Year Pages File Type
1707826 Applied Mathematics Letters 2015 6 Pages PDF
Abstract

The Immersed Interface Method is employed to solve the time-varying electric field equations around a three-dimensional vesicle. To achieve second-order accuracy the implicit jump conditions for the electric potential, up to the second normal derivative, are derived. The trans-membrane potential is determined implicitly as part of the algorithm. The method is compared to an analytic solution based on spherical harmonics and verifies the second-order accuracy of the underlying discretization even in the presence of solution discontinuities. A sample result for an elliptic interface is also presented.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,