Article ID Journal Published Year Pages File Type
1708242 Applied Mathematics Letters 2013 7 Pages PDF
Abstract

A new shifted Chebyshev operational matrix (SCOM) of fractional integration of arbitrary order is introduced and applied together with spectral tau method for solving linear fractional differential equations (FDEs). The fractional integration is described in the Riemann–Liouville sense. The numerical approach is based on the shifted Chebyshev tau method. The main characteristic behind the approach using this technique is that only a small number of shifted Chebyshev polynomials is needed to obtain a satisfactory result. Illustrative examples reveal that the present method is very effective and convenient for linear multi-term FDEs.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,