Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1708620 | Applied Mathematics Letters | 2012 | 5 Pages |
Abstract
We calculate the scaling behavior of the second-kind self-similar blow-up solution of an aggregation equation in odd dimensions. This solution describes the radially symmetric finite-time blowup phenomena and has been observed in numerical simulations of the dynamic problem. The nonlocal equation for the self-similar profile is transformed into a system of ODEs that is solved using a shooting method. The anomalous exponents are then retrieved from this transformed system.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Y. Huang, T.P. Witelski, A.L. Bertozzi,