| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 1708952 | Applied Mathematics Letters | 2010 | 4 Pages | 
Abstract
												Let GG be an nn-vertex graph. If λ1,λ2,…,λnλ1,λ2,…,λn and μ1,μ2,…,μnμ1,μ2,…,μn are the ordinary (adjacency) eigenvalues and the Laplacian eigenvalues of GG, respectively, then the Estrada index and the Laplacian Estrada index of GG are defined as EE(G)=∑i=1neλi and LEE(G)=∑i=1neμi, respectively. Some new lower bounds for EE and LEE are obtained and shown to be the best possible.
Related Topics
												
													Physical Sciences and Engineering
													Engineering
													Computational Mechanics
												
											Authors
												Hamidreza Bamdad, Firouzeh Ashraf, Ivan Gutman, 
											