Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1708960 | Applied Mathematics Letters | 2010 | 6 Pages |
Abstract
For nonzero complex bb let Fn(b)Fn(b) denote the class of normalized univalent functions ff satisfying Re [1+(z(Dnf)′(z)/Dnf(z)−1)/b]>0 in the unit disk UU, where DnfDnf denotes the Ruscheweyh derivative of ff. Sharp bounds for the Fekete–Szegö functional |a3−μa22| are obtained.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
S. Kanas, H.E. Darwish,