Article ID Journal Published Year Pages File Type
1709115 Applied Mathematics Letters 2011 7 Pages PDF
Abstract

A connected graph of order nn is bicyclic if it has n+1n+1 edges. He et al. [C.X. He, J.Y. Shao, J.L. He, On the Laplacian spectral radii of bicyclic graphs, Discrete Math. 308 (2008) 5981–5995] determined, among the nn-vertex bicyclic graphs, the first four largest Laplacian spectral radii together with the corresponding graphs (six in total). It turns that all these graphs have the spectral radius greater than n−1n−1. In this paper, we first identify the remaining nn-vertex bicyclic graphs (five in total) whose Laplacian spectral radius is greater than or equal to n−1n−1. The complete ordering of all eleven graphs in question was obtained by determining the next four largest Laplacian spectral radii together with the corresponding graphs.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,