Article ID Journal Published Year Pages File Type
1710091 Applied Mathematics Letters 2009 7 Pages PDF
Abstract

We consider the problem of determining an unknown source, which depends only on the spatial variable, in a heat equation. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. For a reconstruction of the unknown source from measured data the dual least squares method generated by a family of Meyer wavelet subspaces is applied. An explicit relation between the truncation level of the wavelet expansion and the data error bound is found, under which the convergence result with the error estimate is obtained.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,