Article ID Journal Published Year Pages File Type
1710215 Applied Mathematics Letters 2008 7 Pages PDF
Abstract

In this work, we consider the nonlinear eigenvalue problems u″+ra(t)f(u)=0,00f(s)>0 for s∈(0,s1)∪(s1,+∞)s∈(0,s1)∪(s1,+∞), f(s)<0f(s)<0 for s∈(−∞,s2)∪(s2,0)s∈(−∞,s2)∪(s2,0), the limits f0=lim|s|→0f(s)s, f∞=lim|s|→∞f(s)s exist. Using global bifurcation techniques, we study the global behavior of the components of nodal solutions of the above asymptotically linear eigenvalue problems.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,