Article ID Journal Published Year Pages File Type
1710571 Applied Mathematics Letters 2006 7 Pages PDF
Abstract

When some rows of the system matrix and a preconditioner coincide, preconditioned iterations can be reduced to a sparse subspace. Taking advantage of this property can lead to considerable memory and computational savings. This is particularly useful with the GMRES method. We consider the iterative solution of a discretized partial differential equation on this sparse subspace. With a domain decomposition method and a fictitious domain method the subspace corresponds a small neighborhood of an interface. As numerical examples we solve the Helmholtz equation using a fictitious domain method and an elliptic equation with a jump in the diffusion coefficient using a separable preconditioner.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,