Article ID Journal Published Year Pages File Type
1710630 Applied Mathematics Letters 2006 6 Pages PDF
Abstract

This note deals with a theoretical analysis of the existence, non-uniqueness and non-existence of similarity solutions of the two-dimensional mixed convection boundary-layer flow over a vertical surface with a power law temperature. Here, it is assumed that the surface is embedded in a saturated porous media. The results depend on the power law exponent and the ratio of the Rayleigh to Péclet numbers. It is shown, under certain circumstance, that the problem has an infinite number of solutions.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,