Article ID Journal Published Year Pages File Type
1711259 Biosystems Engineering 2014 11 Pages PDF
Abstract

•Rapid novel method for detection of peduncle/pedicel based on a new contour signature.•Reliable algorithm valid for different fruit with different sizes, shapes or colours.•Accurate orientation of the fruit based on the location of the peduncle.•Accurate estimation of size and weight of fruits based on the contour and area.

The berry size of wine-grapes has often been considered to influence wine composition and quality, as it is related to the skin-to-pulp ratio of the berry and the concentration of skin-located compounds that play a key role in the wine quality. The size and weight of wine-grapes are usually measured by hand, making it a slow, tedious and inaccurate process. This paper focuses on two main objectives aimed at automating this process using image analysis: (1) to develop a fast and accurate method for detecting and removing the pedicel in images of berries, and (2) to accurately determine the size and weight of the berry. A method to detect the peduncle of fruits is presented based on a novel signature of the contour. This method has been developed specifically for grapevine berries, and was later extended and tested with an independent set of other fruits with different shapes and sizes such as peppers, pears, apples or mandarins. Using this approach, the system has been capable of correctly estimating the berry weight (R2 > 0.96) and size (R2 > 0.97) of wine-grapes and of assessing the size of other fruits like mandarins, apples, pears and red peppers (R2 > 0.93). The proven performance of the image analysis methodology developed may be easily implemented in automated inspection systems to accurately estimate the weight of a wide range of fruits including wine-grapes. In this case, the implementation of this system on sorting tables after de-stemming may provide the winemaker with very useful information about the potential quality of the wine.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , , , ,