Article ID Journal Published Year Pages File Type
1713400 Nonlinear Analysis: Hybrid Systems 2016 15 Pages PDF
Abstract

Fault detection and diagnosis (FDD) is an effective technology to assure the safety and reliability of quadrotor helicopters. However, there are still some unsolved problems in the existing FDD methods, such as the trade-offs between the accuracy and complexity of system models used for FDD, and the rarely explored structure faults in quadrotor helicopters. In this paper, a double-granularity FDD method is proposed based on the hybrid modeling of a quadrotor helicopter which has been developed in authors’ previous work. The hybrid model consists of a prior model and a set of non-parametric models. The coarse-granularity-level FDD is built on the prior model which can isolate the faulty channel(s); while the fine-granularity-level FDD is built on the nonparametric models which can isolate the faulty components in the faulty channel. In both coarse and fine granularity FDD procedures, principal component analysis (PCA) is adopted for online fault detection. Using such a double-granularity scheme, the proposed FDD method has inherent ability in detecting and diagnosing structure faults or failures in quadrotor helicopters. Experimental results conducted on a 3-DOF hover platform can demonstrate the feasibility and effectiveness of the proposed hybrid modeling technique and the hybrid model based FDD method.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , ,