Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1713641 | Nonlinear Analysis: Hybrid Systems | 2008 | 12 Pages |
Abstract
Robust viability of hybrid systems is examined based on the controllability operator subject to transition dynamics uncertainty. Two modifications to the controllability operator are introduced, these being the uncertain controllability operator and the uncertainty operator. It is shown how existing fixed-point approximation algorithms can be generalized and applied to compute robustly viable sets for hybrid systems. The three-tank control problem is considered. Robust viable sets are computed for this system subject to transition dynamics uncertainties.
Related Topics
Physical Sciences and Engineering
Engineering
Control and Systems Engineering
Authors
Gino Labinaz, Martin Guay,