Article ID Journal Published Year Pages File Type
1713921 Nonlinear Analysis: Hybrid Systems 2009 21 Pages PDF
Abstract

In this paper, we introduce and study a new hybrid iterative method for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of variational inequalities for a ξξ-Lipschitz continuous and relaxed (m,v)(m,v)-cocoercive mappings in Hilbert spaces. Then, we prove a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm which solves some optimization problems under some suitable conditions. Our results extend and improve the recent results of Yao et al. [Y. Yao, M.A. Noor, S. Zainab and Y.C. Liou, Mixed equilibrium problems and optimization problems, J. Math. Anal. Appl (2009). doi:10.1016/j.jmaa.2008.12.005] and Gao and Guo [X. Gao and Y. Guo, Strong convergence theorem of a modified iterative algorithm for Mixed equilibrium problems in Hilbert spaces, J. Inequal. Appl. (2008). doi:10.1155/2008/454181] and many others.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,