Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1713968 | Nonlinear Analysis: Hybrid Systems | 2009 | 10 Pages |
This paper addresses the exponential stability for a class of nonlinear hybrid time-delay systems. The system to be considered is autonomous and the state delay is time-varying. Using the Lyapunov functional approach combined with the Newton–Leibniz formula, neither restriction on the derivative of time-delay function nor bound restriction on nonlinear perturbations is required to design a switching rule for the exponential stability of nonlinear switched systems with time-varying delays. The delay-dependent stability conditions are presented in terms of the solution of algebraic Riccati equations, which allows computing simultaneously the two bounds that characterize the stability rate of the solution. A simple procedure for constructing the switching rule is also presented.