Article ID Journal Published Year Pages File Type
1714171 Acta Astronautica 2016 14 Pages PDF
Abstract

•Fuel/air mixing for upstream-fuel-injected scramjets is investigated numerically.•Various injector geometries are considered for fuel mixing into Mach 5 crossflow.•Effects of the injection angle and pressure on the mixing performance are examined.•Considerable influence of the injection angle and pressure has been observed.

Effective fuel injection and mixing is of crucial importance for reliable operation of scramjet engines, where fuel must be injected into high-speed crossflow and mixed with air at an extremely short timescale. This paper presents the results of a numerical study that investigates the effects of the injection angle and pressure for various orifice shapes on fuel mixing characteristics into hypersonic airflow at Mach 5, aiming at the application to scramjet operation with upstream fuel injection at Mach 10. The mixing performance has been evaluated with respect to the mixing efficiency, total pressure recovery, fuel penetration, and streamwise circulation. Significant influence of the injection angle and intensity on the mixing has been observed in conjunction with the geometric features of the injector orifice. An additional performance parameter, namely the mixing vorticity effectiveness, has been found to be an effective measure to quantify the contribution of the streamwise vorticity in mixing enhancement.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
,