Article ID Journal Published Year Pages File Type
1715733 Acta Astronautica 2010 14 Pages PDF
Abstract

The architecture concepts and aggressive science objectives for the next phases of Mars exploration will require landed masses an order of magnitude or greater than any Mars mission previously planned or flown. Additional studies have shown the requirements for missions more ambitious than the 2009 Mars Science Laboratory (∼900 kg payload mass) to extend beyond the capabilities of Viking-heritage entry, descent, and landing (EDL) technologies, namely blunt-body aeroshells, supersonic disk-gap-band parachutes, and existing TPS materials. This study details a concept for Mars entry, descent, and landing capable of delivering a 20 t payload within 1 km of a target landing site at 0 km MOLA. The concept presented here explores potentially enabling EDL technologies for the continued robotic and eventual human exploration of Mars, moving beyond the Viking-heritage systems relied upon for the past 30 years of Mars exploration. These technologies address the challenges of hypersonic guidance, supersonic deceleration, precision landing, and surface hazard avoidance. Without support for the development of these enabling technologies in the near term, the timeline for the successful advanced exploration of Mars will likely extend indefinitely.

Keywords
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , , ,