Article ID Journal Published Year Pages File Type
1715937 Acta Astronautica 2011 7 Pages PDF
Abstract

Over the last 3 years, a team at JPL has worked to design a new concept for a small, low cost lander applicable to a variety of in-situ lunar exploration activities. This concept, named Lunette, originated as a design which would exploit potential excess capacity of EELV launches by being compatible with the EELV Secondary Payload Adapter (ESPA). The original Lunette mission concept would have allowed up to six low cost landers to be delivered to a targeted region of the moon, with landings separated by a few km, allowing establishment of a regional network with a single, shared launch. The original concept faced limits in the extent of regional distribution of landing sites since all six landers were dependent on a single solid rocket braking motor. In the last year the Lunette team has focused on a modification of the original ESPA-based concept to a design that would allow launch of multiple individual landers (each with its own braking stage) on a single launch vehicle, where each lander would be capable of independent targeting and landing. With such an implementation, the entire lunar surface could be accessed for establishment of network nodes that could enable high priority geophysical measurements on a scale not seen since Apollo. The present paper discusses the current state of the design of the Lunette geophysical network lander, as well as describing mission design, science operations, and an innovative design solution allowing the lander to take critical data continuously, even over the lunar night, without the need for radioisotope power systems.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, ,