Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1715992 | Acta Astronautica | 2010 | 14 Pages |
Taking inspiration from the orbital dynamics of dust, we find that spacecraft length scaling is a means of enabling infinite-impulse orbits that require no feedback control. Our candidate spacecraft is a 25 μm thick, 1 cm square silicon chip equipped with signal transmitting circuitry. This design reduces the total mass to less than 7.5 mg and enables the spacecraft bus itself to serve as a solar sail with characteristic acceleration on the order of 0.1 mm/s2. It is passive in that it maneuvers with no closed-loop actuation of orbital or attitude states. The unforced dynamics that result from an insertion orbit and a launch-vehicle separation determine its subsequent state evolution. We have developed a system architecture that uses solar radiation torques to maintain a sun-pointing heading and can be fabricated with standard microfabrication processes. This architecture has potential applications in heliocentric, geocentric, and three-body orbits.