Article ID Journal Published Year Pages File Type
1715992 Acta Astronautica 2010 14 Pages PDF
Abstract

Taking inspiration from the orbital dynamics of dust, we find that spacecraft length scaling is a means of enabling infinite-impulse orbits that require no feedback control. Our candidate spacecraft is a 25 μm thick, 1 cm square silicon chip equipped with signal transmitting circuitry. This design reduces the total mass to less than 7.5 mg and enables the spacecraft bus itself to serve as a solar sail with characteristic acceleration on the order of 0.1 mm/s2. It is passive in that it maneuvers with no closed-loop actuation of orbital or attitude states. The unforced dynamics that result from an insertion orbit and a launch-vehicle separation determine its subsequent state evolution. We have developed a system architecture that uses solar radiation torques to maintain a sun-pointing heading and can be fabricated with standard microfabrication processes. This architecture has potential applications in heliocentric, geocentric, and three-body orbits.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, ,