Article ID Journal Published Year Pages File Type
1716233 Acta Astronautica 2010 7 Pages PDF
Abstract

Lightweight, efficient packaging and large operational size in space are the ideal requirements in gossamer structures and membrane materials. Several kinds of these structures were built over the years as demonstrators of spacecraft subsystems. The difficulty to foresee the response of these components during the deployment and/or inflation phase in space or microgravity environments has increased the efforts to simulate their behavior. The aim of this work is to present a collection of analyses performed by finite element approaches on some benchmark cases set up by the European Space Agency. These cases have the purpose of both assessing reliable numerical methods and software packages and providing solutions for some basic engineering problems in this field. The considered cases are listed below and include different phenomena: pressurization and bending deflection of a structure in space in the presence of microgravity environment, deployment analysis of inflated structures, prediction of the wrinkling pattern and the wrinkles amplitude of thin membrane subjected to shear loading along the edges.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, ,