Article ID Journal Published Year Pages File Type
1716738 Acta Astronautica 2009 18 Pages PDF
Abstract

Space robots are playing an increasingly important role in on-orbital servicing, including repairing, refueling, or de-orbiting the satellite. The target must be captured and berthed before the servicing task starts. However, the attitude of the base may lean much and needs re-orientating after capturing. In this paper, a method is proposed to berth the target, and re-orientate the base at the same time, using manipulator motion only. Firstly, the system state is formed of the attitude quaternion and joint variables, and the joint paths are parameterized by sinusoidal functions. Then, the trajectory planning is transformed to an optimization problem. The cost function, defined according to the accuracy requirements of system variables, is the function of the parameters to be determined. Finally, we solve the parameters using the particle swarm optimization algorithm. Two typical cases of the spacecraft with a 6-DOF manipulator are dynamically simulated, one is that the variation of base attitude is limited; the other is that both the base attitude and the joint rates are constrained. The simulation results verify the presented method.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , , , ,