Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1716774 | Acta Astronautica | 2008 | 12 Pages |
Abstract
The solar system galactic frontier-the region where the expanding solar wind meets the surrounding galactic medium-remains poorly explored. The sheer size of the essentially asymmetric heliosphere calls for remote techniques to probe the properties of its global time-varying three-dimensional boundary. The Interstellar Boundary Explorer (IBEX) mission (launch in 2008) will image the region between the termination shock and the heliopause, the heliospheric sheath, in fluxes of energetic neutral atoms. Global imaging in extreme ultraviolet (EUV) will likely be the next logical step in remote exploration of the galactic frontier from 1Â AU. Imaging in EUV will establish directional and spectral properties of (1) the glow of singly charged helium (He+) ions in the interstellar and solar wind plasmas; (2) emissions of hot plasma in the Local Bubble; and (3) characteristic emissions of the solar wind. Global imaging with ultrahigh sensitivity and ultrahigh spectral resolution will map the heliopause and reveal the three-dimensional flow pattern of the solar wind, including the flow over the Sun's poles. This article presents the emerging concept of the experiment and space mission for heliosphere global imaging in EUV.
Related Topics
Physical Sciences and Engineering
Engineering
Aerospace Engineering
Authors
Mike Gruntman,