Article ID Journal Published Year Pages File Type
1717087 Acta Astronautica 2007 10 Pages PDF
Abstract
The time-optimal rest-to-rest maneuvering control problem of a rigid spacecraft is studied in this paper. By utilizing an iterative procedure, this problem is formulated and solved as a constrained nonlinear programming (NLP) one. In this novel method, the count of control steps is fixed initially and the sampling period is treated as a variable in the optimization process. The optimization object is to minimize the sampling period below a specific minimum value, which is set in advance considering the accuracy of discretization. To generate initial feasible solutions of the NLP problem, a genetic-algorithm-based is also proposed such that the optimization process can be started from many different points to find the globally optimal solution. With the proposed method, one can find a time-optimal rest-to-rest maneuver of the rigid spacecraft between two attitudes. To show the feasibility of the proposed method, simulation results are included for illustration.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,