Article ID Journal Published Year Pages File Type
1717184 Acta Astronautica 2007 5 Pages PDF
Abstract
The organism is exposed to diverse orthostatic stimuli, which can induce several acute and chronic adaptive responses. In this study, we investigated hemodynamic responses elicited by short-term and intermediate-term various orthostatic stimuli, using normotensive and hypertensive rat models. Arterial blood pressure and heart rate were measured by telemetry. Hypertension was induced by NO-synthase blockade. Effect of orthostatic and inverse-orthostatic body positions were examined in 45∘ head-up (HUT) or head-down tilt (HDT), either for 5 min duration repeated 3 times each with a 5-min pause “R”, or as sustained tilting for 120 min “S”. Data are given as mean±SEM. In normotensives, horizontal control blood pressure was R115.4±1.4/S113.7±1.6mmHg and heart rate was R386.4±7.0/S377.9±8.8BPM. HUT changed blood pressure by R<±1(ns)/S4.6mmHg(p<0.05). HDT resulted in augmented blood pressure increase by R6.2(p<0.05)/S14.4mmHg(p<0.05). In NO-deprived hypertension, horizontal control hemodynamic parameters were R138.4±2.6/S140.3±2.7mmHg and R342.1±12.0/S346.0±8.3BPM, respectively. HUT and HDT changed blood pressure further by R<±1(ns)/S5.6mmHg(p<0.05) and by R8.9(p<0.05)/S14.4mmHg(p<0.05), respectively. Heart rate changed only slightly or non-specifically. These data demonstrate that both normotensive and hypertensive conscious rats restricted from longitudinal locomotion respond to sustained orthostasis or inverse-orthostasis related gravitational stimuli with moderate or augmented hypertension, respectively.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , , ,