Article ID Journal Published Year Pages File Type
1717585 Aerospace Science and Technology 2016 7 Pages PDF
Abstract
In general, it is difficult to analyse equipment for space applicability due to the fact that realistic tests on Earth are technically difficult and expensive. To prove the reliability of space systems, a combination of numerical analysis and expensive pre-flight tests is used. However, this paper discusses a new methodology in which a combination is made of low-budget ground tests with a newly developed finite element model updating technique which can deliver a time efficient added value or alternative to the expensive and time-consuming pre-flight tests during thermal analysis. In addition, this contribution shows the influence of several design parameters on the accuracy of thermal simulations for space applications and discusses how this accuracy can be optimised. The methodology is verified within the HACORD project of the REXUS/BEXUS programme.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , , , ,