Article ID Journal Published Year Pages File Type
1717690 Aerospace Science and Technology 2016 20 Pages PDF
Abstract
In the present work the effects of important parameters such as core thickness, radius of curvature and sector angle on the static and dynamic response of composite cylindrical sandwich panels have been investigated using a higher-order sandwich panel theory (HSAPT). The presented higher-order theory, which applies first-order shear deformation shell theory (FSDT) for the face sheets and the equivalent elasticity theory for the core, is a rigorous approach that includes the higher-order effects incurred by the nonlinearity of the in-plane and transverse displacements of core. Equations of motion along with associated boundary conditions are derived by using Hamilton's principle. For simply-supported panels closed-form solutions can be achieved by Navier techniques. However, for dynamic analysis, the solution is obtained in the time domain by implementing Newmark method. Finally numerical parametric studies are performed to provide some insight into the roles of key variables that influence the static and dynamic response of sandwich panels.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,