Article ID Journal Published Year Pages File Type
1718183 Aerospace Science and Technology 2013 12 Pages PDF
Abstract

The terminal guidance problem for missiles intercepting maneuvering targets with terminal impact angle constraints is investigated. Regarding the target acceleration as an unknown bounded disturbance, novel guidance laws based on integral sliding mode control (ISMC) method technique are developed. The first one is a linear integral sliding mode (ISM) guidance law, which can guarantee the line-of-sight (LOS) angular rate and the LOS angle asymptotical convergence with infinite time. To further improve the convergence characteristics of guidance system, a nonlinear ISM guidance law is developed, which guarantees the LOS angular rate and LOS angle finite-time convergence characteristics. However, to guarantee the guidance system has a good performance for dealing with target acceleration, the switch gains of both linear and nonlinear ISM guidance laws need to be chosen larger than the bound of the target acceleration. It will lead to chattering problem. To reduce the chattering phenomenon and improve the performance of system, nonlinear disturbance observer (NDOB) is employed to estimate the target acceleration. The estimated acceleration is used to compensate to actual target acceleration. Then, two novel composite guidance laws combining linear and nonlinear ISM guidance laws with feedforward compensation terms based on NDOB are developed. Finally, simulation comparison results are provided to demonstrate the effectiveness of the proposed methods.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,