Article ID Journal Published Year Pages File Type
1718518 Aerospace Science and Technology 2011 11 Pages PDF
Abstract

This publication describes a CAD/CAE-based multidisciplinary process for the mass estimation of transport aircraft wingbox structures. The underlying method is physics-based and emulates the structural design process that takes place during the preliminary design phase. A structural sizing algorithm featuring a novel FEM-based buckling criteria is used for the dimensioning of the wingbox structure. Effects of static aeroelasticity are simulated with an iterative fluid–structure coupling method.Following a recent trend in aircraft pre-design, the multidisciplinary process relies on the integrated CAD/CAE software CATIA V5 for the generation of the parametric-associative geometrical and structural models. Besides multi-model generation capabilities, the CAD/CAE software features custom interfaces for the generation and application of wing loads such as aerodynamic or fuel loads. Special emphasis was put on the implementation of local load introduction methods. Fuel loads, for instance, are represented by surface-distributed hydrostatic pressure loads determined by the actual fuel distribution and the acceleration vector acting on the aircraft. The finished process was used to perform a mass estimation of the wingbox of a generic long range aircraft derived from the DLR-F11 configuration.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , , ,