Article ID Journal Published Year Pages File Type
1718598 Aerospace Science and Technology 2009 9 Pages PDF
Abstract

Circular thin orthotropic shells have many applications in the aerospace industry such as aircraft, missile and launcher. An analytical study is conducted in this paper to understand the characteristic of sound transmission through an orthotropic cylindrical shell. The shell is assumed to be infinitely long and is subjected to a plane wave with uniform airflow in the external fluid medium. An exact solution is obtained by solving the first-order shear deformation and acoustic wave equations simultaneously. The transmission losses (TLs) obtained from the numerical solution are compared with those of other authors. Additionally, in comparison with the classical thin shell theory (CST), the first-order shear deformation theory (FSDT) calculates with the best degree of accuracy. Numerical results are used to show the effects of fiber direction, geometrical properties, Mach number and material properties.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering