Article ID Journal Published Year Pages File Type
1718871 Aerospace Science and Technology 2007 8 Pages PDF
Abstract

The often encountered problem of mode partitioning for delaminated, isotropic beam structures is addressed. For the sake of efficiency, solutions that do not require complex continuum solutions – in practise mostly obtained by the finite element method – are examined. Three approaches that meet the postulated efficiency are reviewed and compared. While one method fits consistently into the concept of linear-elastic fracture mechanics, the remaining two deduce mode partitioning hypotheses solely from kinematic quantities of beam theory. The results obtained through these hypotheses are then compared to continuum-based solutions. The latter are generated by the finite element method and are validated by analytical solutions as applicable. Furthermore, mode partitioning solutions for beams, loaded in transverse shear, are given with excellent accuracy. Finally, the conditions for which the different methods comply with or substantially deviate from each other are discussed.

Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering