Article ID Journal Published Year Pages File Type
1719846 Applied Ocean Research 2016 7 Pages PDF
Abstract
Coral reefs are important ecosystems that not only provide shelter and breeding ground for many marine species, but can also control of carbon dioxide level in ocean and act as coastal protection mechanism. Reduction of coral reefs at Singapore coastal waters (SCW) region remains as an important study to identify the environmental impact from its busy industrial activities especially at the surrounding of Jurong Island in the south. This kind of study at SCW was often being related to issues such as turbidity, sedimentation, pollutant transport (from industry activities) effects in literatures, but seldom investigated from the thermal change aspect. In this paper, a computational model was constructed using the Delft3D hydrodynamic module to produce wave simulations on sea regions surrounding Singapore Island. The complicated semi-diurnal and diurnal tidal wave events experienced by SCW were simulated for 2 weeks duration and compared to the Admiralty measured data. To simulate the thermal mapping at the south Singapore coastal waters (SSCW) region, we first adapted a conversion of industrial to thermal discharge; then from the discharge affected area a thermal map was further computed to compare with the measured coral map. The outcomes show that the proposed novel thermal modelling approach has quite precisely simulated the coral map at SSCW, with the condition that the near-field thermal sources are considered (with the coverage area in the limit of 20 km × 20 km).
Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
,