Article ID Journal Published Year Pages File Type
1721839 Journal of Hydrodynamics, Ser. B 2016 11 Pages PDF
Abstract

The rotating axisymmetric cavitator is widely applied in underwater vehicles, and its rotational motion affects the cavitating flow over the cavitator. This study focuses on the effect of rotation on the flow structure in the cavity bubble. Unsteady 2-D/3-D numerical simulations of cavitating flows over axisymmetric cavitators are performed using the volume of fraction (VOF) method and the Sauer-Schnerr cavitation model. Firstly, the 2-D simulation of cavitating flow over a circular disk or a cone cavitator is carried out at various cavitation numbers (0.15, 0.175, 0.2, 0.225 and 0.25). The simulated cavity lengths and drag coefficients are compared with the experimental data, the theoretical estimations and the published numerical results. Then the 3-D simulations of cavitating flows over the same axisymmetric cavitators with different rotating speeds are performed using the sliding mesh model (SMM). The effect of rotation on the cavity shape and the internal flow structure is analyzed.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, , ,