Article ID Journal Published Year Pages File Type
1721851 Journal of Hydrodynamics, Ser. B 2016 11 Pages PDF
Abstract
Hydrodynamic optimization of the hull forms can be realized through the implementation and integration of computational tools that consist of a hydrodynamic module, a hull surface representation and modification module, and an optimization module. In the present paper, a new bulbous bow generation and modification technique has been developed and integrated into the hull surface representation and modification module. A radial basis function based surrogate model is developed to approximate the objective functions and reduce the computing cost. A multi-objective artificial bee colony optimization algorithm is implemented and integra- ted into the optimization module. To illustrate the integrated hydrodynamic optimization tools, a cargo ship is optimized for reduced drag. The optimal hull forms obtained are then validated computationally and experimentally. Validation results show that the prese- nt tools can be used efficiently and effectively in the simulation based design of the hull forms for reduced drag.
Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, ,