Article ID Journal Published Year Pages File Type
1721933 Journal of Hydrodynamics, Ser. B 2013 4 Pages PDF
Abstract

Air entrainment is an effective approach to protect release works from cavitation damage. The traditional method of aerator device designs is that, for given flow conditions, the geometries of the aerator device are designed and then the effects are experimentally tested for cavitation damage control. The present paper proposes an inverse problem method of determining the bottom slopes in front of and behind an aerator if the requirements of air entrainment, flow conditions and some of aerator geometric parameters are given. An RBF neural network model is developed and the relevant bottom slopes are calculated in different conditions of flow and geometry on the basis of the data of 19 aerator devices from different discharge tunnels with safe operation. The case study shows that the methodology provides an effective way to design aerator devices under given target conditions.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering