Article ID Journal Published Year Pages File Type
1722038 Journal of Hydrodynamics, Ser. B 2015 13 Pages PDF
Abstract

A general framework (methodology and procedures) for verification and validation (V&V) of large eddy simulations in computational fluid dynamics (CFD) is derived based on two hypotheses. The framework allows for quantitative estimations of numerical error, modeling error, their coupling, and the associated uncertainties. To meet different needs of users based on their affordable computational cost, various large eddy simulation (LES) V&V methods are proposed. These methods range from the most sophisticated seven equation estimator to the simplest one-grid estimator, which will be calibrated using factors of safety to achieve the objective reliability and confidence level. Evaluation, calibration and validation of various LES V&V methods in this study will be performed using rigorous statistical analysis based on an extensive database. Identification of the error sources and magnitudes has the potential to improve existing or derive new LES models. Based on extensive parametric studies in the database, it is expected that guidelines for performing large eddy simulations that meet pre-specified quality and credibility criteria can be obtained. Extension of this framework to bubbly flow is also discussed.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering