Article ID Journal Published Year Pages File Type
1722089 Journal of Hydrodynamics, Ser. B 2011 8 Pages PDF
Abstract

It is well known that shark skin surface can effectively inhabit the occurrence of turbulence and reduce the wall friction, but in order to understand the mechanism of drag reduction, one has to solve the problem of the turbulent flow on grooved-scale surface, and in that respect, the direct numerical simulation is an important tool. In this article, based on the real biological shark skin, the model of real shark skin is built through high-accurate scanning and data processing. The turbulent flow on a real shark skin is comprehensively simulated, and based on the simulation, the drag reduction mechanism is discussed. In addition, in order to validate the drag-reducing effect of shark skin surface, actual experiments were carried out in water tunnel, and the experimental results are approximately consistent with the numerical simulation.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering