Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1722125 | Journal of Hydrodynamics, Ser. B | 2014 | 9 Pages |
The contribution of the vortex Rossby wave (VRW) to the spiral rainband in the tropical cyclones (TCs) is studied in the framework of a barotropic non-divergent TC-like vortex model. The spectral function expanding method is used to analyze the disturbance evolution of a defined basic state vortex. The results show that the numerical solution of the model is a superposition of the continuous spectrum component (non-normal modes) and the discrete spectrum component (normal modes). Only the eyewall and the rainbands in the inner core-region in a TC are related to the VRW normal modes, whereas the continuous spectrum wave components play an important role in the formation of secondary-, principal-, and distant- rainbands, especially the outer rainband, through an indirect way. The continuous spectrum can promote the development of the TC circulation for the occurrence of a mesoscale instability. The convection under a favorable moisture condition will trigger the inertial-gravitational wave to cause the formation of unstable spiral bandliked-disturbances outside of the eyewall. The complicated interaction between the basic state-vortex and the VRW disturbances will cause a positive feedback between the TC circulation and the rainband.