Article ID Journal Published Year Pages File Type
1722175 Journal of Hydrodynamics, Ser. B 2010 8 Pages PDF
Abstract

This study investigates the flow field induced by the tilting lift of a large object from a rigid porous seabed and the induced force acting on the object using an analytical approach. In the corners between the object and the seabed, we assume the flow is a corner flow with a low Reynolds number, and the porous media flow in the seabed obeys Brinkman equations. The complete boundary conditions for viscous flow, including the continuity of velocities and stresses, are utilized at the seabed-water interface. The Helmholtz decomposition theorem, which decomposes the flow field into irrotational and rotational parts, and a perturbation expansion are employed to solve the boundary-value problem. Leading-order analytical solutions for the flow in the water and in the porous seabed are presented, indicating that the flow inside the corners is not a parallel flow, and the porous media flow inside the seabed is a Stokes boundary layer flow that does not obey Darcy's law.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering