Article ID Journal Published Year Pages File Type
1722268 Journal of Hydrodynamics, Ser. B 2012 11 Pages PDF
Abstract

The Generalized Integral Transform Technique (GITT) was applied to predict dynamic response of Vortex-Induced Vibration (VIV) of a long flexible cylinder. A nonlinear wake oscillator model was used to represent the cross-flow force acting on the cylinder, leading to a coupled system of second-order Partial Differential Equations (PDEs) in temporal variable. The GITT approach was used to transform the system of PDEs to a system of Ordinary Differential Equations (ODEs), which was numerically solved by using the Adams-Moulton and Gear method (DIVPAG) developed by the International Mathematics and Statistics Library (IMSL). Numerical results were presented for comparison to those given by the finite difference method and experimental results, allowing a critical evaluation of the technique performance. The influence of variation of mean axial tension induced by elongation of flexible cylinder was evaluated, which was shown to be not negligible in numerical simulation of VIV of a long flexible cylinder.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering